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Multiple myeloma, the second-most common hematopoietic malignancy in the United States, still remains an incurable disease
with dose-limiting toxicities and resistance to primary drugs like proteasome inhibitors (PIs) and Immunomodulatory drugs (IMiDs).

We have created a computational pipeline that uses pharmacogenomics data-driven optimization-regularization/greedy algorithm
to predict novel drugs (“secDrugs”) against drug-resistant myeloma. Next, we used single-cell RNA sequencing (scRNAseq) as a
screening tool to predict top combination candidates based on the enrichment of target genes. For in vitro validation of secDrugs,
we used a panel of human myeloma cell lines representing drug-sensitive, innate/refractory, and acquired/relapsed PI- and IMiD
resistance. Next, we performed single-cell proteomics (CyTOF or Cytometry time of flight) in patient-derived bone marrow cells
(ex vivo), genome-wide transcriptome analysis (bulk RNA sequencing), and functional assays like CRISPR-based gene editing to
explore molecular pathways underlying secDrug efficacy and drug synergy. Finally, we developed a universally applicable
R-software package for predicting novel secondary therapies in chemotherapy-resistant cancers that outputs a list of the top drug
combination candidates with rank and confidence scores.

Thus, using 17AAG (HSP90 inhibitor) + FK866 (NAMPT inhibitor) as proof of principle secDrugs, we established a novel pipeline to
introduce several new therapeutic options for the management of PI and IMiD-resistant myeloma.
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INTRODUCTION
Multiple myeloma (MM) is the second-most common hematopoie-
tic malignancy in the United States [1]. MM is an age-dependent
plasma cell neoplasm characterized by clonal expansion of
malignant antibody-producing post-germinal- center B cell-
derived plasma cells within the bone marrow with significant
complexity and heterogeneity at the molecular level [1]. Protea-
some inhibitors (PIs) are standard-of-care chemotherapeutic agents
for myeloma that impede tumor metastasis and angiogenesis by
accelerating unfolded protein response (UPR) or the ubiquitin-
dependent proteolysis of important regulatory proteins involved in
key physiological and pathophysiological cellular processes in
cancer cells and by interfering with the NF-κB-enabled regulation of
cell adhesion-mediated drug resistance [2–6]. Bortezomib (Bz/
Velcade) was the first PI to be approved by U.S. Food and Drug
Administration (FDA) for clinical application in 2003 for the

treatment of relapsed and refractory myeloma [1, 7, 8]. Other
examples include second-generation PIs Carfilzomib (Cz/Kyprolis)
and the oral medication Ixazomib (Ix /Ninlaro/MLN9708) [7–9]. PIs
are effective anti-MM drugs when used alone or in combination
with other anti-cancer agents like immunomodulatory drugs
(IMiDs), alkylating agents, topoisomerase inhibitors, corticosteroids,
and histone deacetylase inhibitors (HDACis) [1, 3]. However, despite
these and other recent improvements in therapies, myeloma still
remains a difficult-to-cure disease with dose-limiting toxicities and
drug resistance and a median survival rate of only around 7 years
[7, 10]. Not all patients respond equally well to treatment and those
who do often develop resistance over the course of treatment. Drug
resistance may therefore be categorized into (1) innate resistance
already present in drug-naive patients who never respond to
treatment, or (2) emerging/acquired resistance where a patient’s
tumor ultimately undergoes relapse or “acquires” the ability to resist
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therapy in the course of treatment despite good response to initial
treatment [2, 11]. Therefore, there is an urgent need to search for
novel secondary therapeutic options where new agents may be
combined with standard-of-care drugs to achieve synergistic effects
for treating drug resistance in myeloma.
Deciphering key features within patients underlying tumor

heterogeneity and personalized sensitivity to chemotherapy is
essential to predict the efficacy of anti-cancer drugs and to
prevent delay in the selection of more effective alternative
strategies [2, 11–14]. However, assessing the survival endpoints in
clinical applications requires the treatment of a large number of
patients with these drugs that need to be measured in months to
years. Therefore, developing prediction algorithms of response
can be a long process. One alternative is to use collections of
human cancer cell lines from patient tumors that represent a
broad spectrum of the biological and genetic heterogeneity of
cancer, commonly known as in vitro modeling of drug response.
We have compiled a panel of >70 human myeloma cell lines
(HMCLs) representing the broad spectrum of biological and
genetic heterogeneity of myeloma patients [15].
In this study, we have developed a computational method

called secDrug for discovering novel synergistic secondary drug
combinations that may effectively reverse resistance as combina-
tion regimens and allow for reduced dosing and toxicity of FDA-
approved myeloma drugs. Next, we introduced single-cell
transcriptomics as a novel screening tool for prioritizing secDrug
combinations based on the subclonal expression of the drug
targets and observed that the 17AAG+ FK866 combination is
potentially highly efficacious.
Further, to validate our prediction results, we used our HMCL panel

as in vitro model system representing inter-individual heterogeneity
in drug-response/resistance to show that the top predicted
secondary secDrugs are indeed effective against PI- and IMiD
resistance as single agents or as a combination. Further, using 17-
AAG (an HSP90 inhibitor) as the test secDrug, we added functional
assays, next-generation RNA sequencing, CRISPR-based gene editing,
and high-dimensional mass cytometry (CyTOF/cytometry time of
flight) in primary bone marrow cells (PMCs; ex vivo model system)
from myeloma patients to create a multi-pronged approach/pipeline
to discover, validate and characterize novel drugs as potential
secondary choices for circumventing resistance to primary drugs in
myeloma and to generate better treatment outcomes. This also
allowed the identification of differentially expressed (DE) genes and
novel pathways associated with the successful drug combinations.

MATERIALS AND METHODS
In silico prediction of secondary drugs
Design and development of the secDrug pipeline are non-trivial and
mathematically involved (details provided in Supplementary Methods
section). Briefly, we utilized we used the vast array of human cancer cell
lines in the Genomics of Drug Sensitivity in Cancer (GDSC version
GDSC1000) database and created a pharmacogenomics data-driven
greedy algorithm-based set-covering computational optimization method
followed by a regularization technique to seek all secondary drugs that
could kill the maximum number of cell lines of the test disease (B-cell
cancers) resistant to the test drug (PI) in a sequential manner ordered by
the number of cell lines killed. A greedy algorithm constructs a solution to
an optimization problem piece by piece through a sequence of choices to
find the overall, or globally, optimal solution. The GDSC1000 database is
the largest public collection of information on sensitivity to >250 drugs
covering a wide range of targets and processes involved in cancer biology
in >1000 human cancer cell lines [16, 17]

Drugs, reagents, antibodies, and kits
Ixazomib (Ixa) was procured from Takeda (Takeda Pharmaceuticals Inc.,
Deerfield, IL, USA). All other drugs were purchased from Selleck Chemicals.
Drugs were dissolved in dimethyl sulfoxide (DMSO) and stored at −20 °C.
Recombinant Human IL-6 was obtained from Peprotech.

Cleaved caspase-3/8/9, HSP90, c-Myc, p65, and IRF4 antibodies were
purchased from Cell signaling Technology (CST). Monoclonal Anti-β-Actin-
Peroxidase antibody produced in mouse was purchased from Sigma-
Aldrich (St Louis, MO). Goat anti-Mouse/Rabbit IgG (H+ L) secondary
antibody (HRP conjugated) was obtained from Thermo Fisher Scientific.
DHE (Dihydroethidium) assay kit and JC-1 Mitochondrial Membrane
Potential (MMP) assay kit were purchased from Abcam (Boston, MA).
Caspase-Glo 3/7 Assay System and CellTiter-Glo 2.0 Assay were purchased
from Promega (Madison, WI).

Human myeloma cell lines (HMCLs)
HMCLs generated through the immortalization of primary myeloma cells
were used as in vitro model systems to screen top secDrugs against
sensitive, innate resistant, and acquired (Parental/P vs. clonally-derived
resistant/R pairs generated using dose escalation over a period of time)
myeloma [15]. We have also generated in vitro drug response profile for
the four PIs: Bz, Cz, Oprozomib (Opz), and Ix as single agents in all the
HMCLs included in the panel. PI-sensitivity in these cell lines was highly
correlated, which suggests that any of these four PIs could be used as
surrogates [15]. Therefore, we used Ixazomib as the representative PI in
this study. Further, we have used machine learning-based computational
approaches to derive a gene expression signature predictive of baseline PI-
response in myeloma [15]. The creation of the ANBL6 N-ras (ANBL6/Ras)
codon 61 activating mutant cell line has been described earlier [18]. The
IMiD resistant cell line, MM1S LenR, was obtained as a gift from Dr. Keith
Stewart, Mayo Clinic, AZ. All cell lines were authenticated at source and
tested randomly at regular intervals at the AU Center for Pharmacoge-
nomics and Single-Cell Omics (AUPharmGx) using GenePrint 24 System
(Promega). All cell lines are mycoplasma negative. HMCLs were maintained
in HMCL media supplemented with IL-6 [19].

Human primary myeloma cells (PMCs)
Bone marrow-derived CD138+ ve patient PMCs were obtained through
Mayo Clinic, MN following written informed consent and used as ex vivo
model systems. Prior IRB approval was obtained from the Mayo Clinic
review board. Participants were identified by number, not by name.

Establishment of RPMI8226 Hsp90 CRISPR-knockout cell line
Chemically-modified synthetic single-guide RNA (sgRNA) were designed
targeting the Hsp90AA1 gene and synthesized by Synthego (Synthego
Corporation, Menlo Park, CA). The sgRNAs were required to meet strict off-
target requirements of at least 2 mismatches within an early exon and
target a common exon present in the majority of annotated transcripts.
The sgRNAs were complexed together with the spCas9 to form a
ribonucleoprotein (RNP). The RNPs were then delivered to RPMI8226 cells
via an optimized electroporation setting. The transfected cells were then
recovered for 2 days before the edits created were evaluated. Positive
control sgRNA (RELA) were transfected at the same time. The edited site
was PCR-amplified, and Sanger sequencing was performed on the
amplicons Sequencing data was then analyzed using Synthego’s Inference
of CRISPR Edits (ICE) software tool to determine the percentage of knock-
out (KO) sequences of the genetic target [20]. ICE identifies the editing
frequency and the specific indels present in the pool. Additionally, ICE
calculates the frequency of the desired KO, reported as the KO score.
Finally, once minimum KO editing efficiency was confirmed, RPMI8226/
Hsp90KO cells were expanded and QC tested.

In vitro chemosensitivity assays and drug synergy analysis
Cells were treated with increasing concentrations of secDrugs and PIs
(represented by Ixazomib) or IMiDs (represented by Lenalidomide) as single
agents or in combination for 48 h, and cytotoxicity assays were performed
using CellTiter-Glo® Luminescent cell viability assay (Promega Madison, WI).
Luminescence was recorded in a Neo2 Microplate Reader (Biotek), and half-
maximal inhibitory concentration (IC50) values were determined using
GraphPad Prism software by calculating the nonlinear regression using
sigmoidal dose-response equation (variable slope). Drug synergy was
calculated using Calcusyn software based on Chou–Talalay’s combination
index (CI) method and the isobologram algorithm (Biosoft, US) [21].

Apoptosis assays
Caspase-3/7 activity assay was performed on the HMCLs using Caspase-Glo
3/7 luminescent assay kit according to manufacturer’s instructions
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(Promega Madison, WI) using Neo 2 Microplate Reader (Biotek). Cell death
by apoptosis was also measured by immunoblotting analysis.

Determination of superoxide levels
Cells were incubated with 5 μM DHE (in RPMI) for 15min in the dark at
37 °C. Cells were then washed once with cell-based assay buffer, and red
fluorescence was recorded by Synergy Neo2 multi-plate reader.

Measurement of mitochondrial membrane potential (MMP)
Cells were incubated with 5 μM JC-1 dye for 15min in the dark at 37 °C and
washed twice in PBS, and then analyzed for red and green fluorescence by
Synergy Neo2 multi-plate reader.

Mass cytometry (CyTOF)
Thirty-seven antibody targets directed against cell surface and intracellular
markers were utilized as Immunphenotyping Panel for CyTOF analysis. The
Antibody markers and respective metal conjugate are described in
Supplementary Table S1. Panels were designed using the web-based
panel designer software: Maxpar Panel Designer (www.fluidigm.com) for
optimal signals, minimum background due to oxidation, isotopic purity,
and sufficient sensitivity for each targeted marker. Prelabeled antibodies
were purchased from Fluidigm. Purified antibodies from Biolegend and
Santacruz Biotechnology were labeled using an X8 polymer MaxPAR
antibody conjugation kit (Fluidigm) according to the manufacturer’s
instructions. CyTOF analysis was performed on PMCs treated with DMSO
(vehicle/control), 0.2 µM 17AAG,1 µM 17AAG, and 5 µM 17AAG.

CyTOF data analysis
Cytobank software version 7.3.0 (Santa Clara, CA) was used for cleanup of
cell debris, removal of doublets and dead cells. Cleaned fcs files were
further gated and analyzed by Cytobank. Plasma cells were identified as
CD19−, CD16−, CD3−, CD38+, and kappa OR lambda+ (based on each
patient’s kappa or lambda restriction from clinical flow data). If the plasma
cells had diminished surface CD38 expression as a result of previous
daratumumab exposure, CD229 was used as a positive selection marker.
T-distributed stochastic neighbor embedding (t-SNE), viSNE, and FlowSom
plots were generated to visualize the subpopulation architecture based on
markers of interest. Relative marker intensities and cluster abundances per
sample were visualized by a heatmap.

Single-cell RNA sequencing (scRNAseq)
Automated single-cell capture and cDNA synthesis were performed at
~1500 tumor cells/sample using 10× Genomics Chromium platform that
uses droplet-sequencing-based chemistry. Single-cell RNA sequencing was
performed on Illumina HiSeq 2500 NGS platform (Paired-end. 2 × 125 bp,
100 cycles. v3 chemistry) at >50 million reads per sample.

scRNAseq data analysis
scRNAseq datasets were obtained as matrices in the Hierarchical Data
Format (HDF5 or H5). A combination of Seurat and Partek Flow software
packages was used to pre-process the data and perform single-cell
transcriptomics analysis. Highly variable genes for clustering analysis were
selected based on a graph-based clustering approach. The visualization of
cell populations was performed by t-SNE.

Next-generation RNA sequencing (NGS)
HMCLs were plated at a density of 4 × 105 cells per mL, and 0.5 μM of 17-AAG
was added as a single agent or in combination with 15 nM of Ixazomib.
Baseline (untreated) and post-treatment (treated) cells were collected 24 h
post-treatment. High-quality RNA was extracted using QIAshredder and
RNeasy kit (Qiagen). RNA concentration and integrity were assessed using
Nanodrop-8000 and Agilent 2100 Bioanalyzer and stored at −80 °C. An RNA
integrity number threshold of eight was applied, and RNA-seq libraries were
constructed using Illumina TruSeq RNA Sample Preparation kit v2.
NGS Libraries were size-selected, and RNA sequencing (RNAseq) was

performed on Illumina’s NovaSeq platform using 150 bp paired-end
protocol with a depth of >20million reads per sample.

RNAseq data analysis
Gene expression data were pre-processed, log2-transformed, and analyzed
using a combination of command-line based analysis pipeline (DEseq2 and

edgeR) and Partek Flow software to identify differential gene expression
profiling (GEP) signatures. Genes with mean counts<10 were removed, and
CPM (counts per million) data was used to perform differential expression
testing to identify GEP signatures. Due to the small sample sizes, we used
GSA to perform differential gene expression analysis between groups that
applies limma, an empirical Bayesian method, to detect the DE genes
(DEGs). Genes with mean fold-change > |1| and p < 0.05 were considered as
the threshold for reporting significant differential gene expression.
Heatmaps were generated using unsupervised hierarchical clustering
(HC) analysis based on the top DEGs.

Pathway analysis
Ingenuity pathway analysis (IPA) software (QIAGEN) was used to identify the
molecular pathways and upstream regulators predicted to be activated or
inhibited in response to 17-AAG treatment (single-agent and combination
with PIs) based on the list of significantly differentially regulated genes [22].

Western Blotting
HMCLs treated with 17-AAG alone, Ixa alone, or 17-AAG+ Ixa combination
were harvested, washed, and lysed using radioimmunoprecipitation assay
(RIPA) lysis buffer containing 50mM Tris-HCl, pH 7.5, 150 mM NaCl, 1%
NP40, 5 mM EDTA, 1 mM DTT, phosphatase, and protease inhibitors
cocktail (Sigma) and incubated on ice for 15min. Samples were then
centrifuged at 14,000 rpm at 4 °C for 30min. The supernatant was then
aspirated and quantified using Pierce™ BCA Protein Assay Kit (Thermo
Scientific). Samples were solubilized in sodium dodecyl sulfate-
polyacrylamide gel electrophoresis sample buffer, and equal amounts of
protein were loaded per lane of 10% sodium dodecyl sulfate-
polyacrylamide gels and transferred onto PVDF membranes (Millipore;
Billerica, MA). Membranes were blocked in TBS with SuperBlock™ blocking
buffer (Thermo Fisher), incubated with primary antibodies and secondary
antibodies in TBS with 0.2% Tween 20 and 2.5% bovine serum albumin.
Immunoreactivity was detected by chemiluminescent HRP substrate (Bio-
Rad), and the exposed image was captured using a ChemiDoc™ MP
Imaging System (Bio-Rad). Densitometry analysis was performed using
Image J software.

Statistical analysis
All statistical analyses were performed using R (the project for statistical
computing and graphics) and GraphPad Prism 9.0 software. All tests were
two-sided, and p < 0.05 was considered statistically significant.

RESULTS
Identification of secondary drugs using secDrug algorithm
Details on the design and development of the secDrug pipeline
are provided in the Supplementary Methods section. Briefly, a
novel modified greedy algorithm-based set-covering computa-
tional optimization-regularization pipeline was used to identify all
secondary drugs that could kill the maximum number of cell lines
in the GDSC1000 database belonging to the test disease (B-cell
cancers including myeloma) and which are resistant to the PI/PI
drug Bortezomib (Bz/Velcade; the primary anti-myeloma drug). A
total of 1091 cells lines were present in the GDSC1000 database
[16, 17]. The following filtering criteria were applied to select
computable B-cell lines: target cell—B-cell; cancer type—blood;
tissue—blood; histology—lymphoid_neoplasm/haematopoietic_-
neoplasm; site—haematopoietic_and_lymphoid_tissue; no miss-
ing data). A total of 94 cell lines satisfied the above filtering criteria
and were selected for further analysis. IC50 values were processed,
imputed, and categorized as S (PI-sensitive), R (PI-resistant), and N
(“Neutral”/Intermediate PI IC50 values) prior to analysis. We applied
our computation algorithm to the GDSC1000 dataset and
predicted the top secDrugs that can be best combined with PIs
to achieve response in N and R lines. The predicted top secondary
drug combinations in PI-resistant+ PI-neutral B-cell cancers with a
PI backbone are shown in Table 1. These include HSP90 inhibitor
(17-AAG), Nicotinamide phosphoribosyltransferase or Nampt
inhibitor (FK866), PIKfyve inhibitor (YM201636), Raf inhibitor
(PLX-4720), Bcl2 inhibitor (Navitoclax), SB505124 (transforming
growth factor-β type I receptor, ALK4, ALK7 inhibitor), S6K1-
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Table 1. Detailed list of top combination treatment regimens with a proteasome inhibitor (PI) backbone predicted using the secDrug computational
algorithm.

Sl. No. NoDrug PI only (%) PI+ 2 secDrugs PI+ 3 secDrugs

1 PI+ FK866+ 17.AAG PI+ FK866+ 17.AAG+ SB216763

0 33.0 72.2% 82.5%

2 PI+ XAV939+ 17.AAG PI+ XAV939+ 17.AAG+ VNLG.124

0 33.0 71.1% 83.5%

3 PI+ PF.4708671 + Bleomycin PI+ PF.4708671 + Bleomycin + FK866

0 33.0 76.3% 87.6%

4 PI+ Bleomycin + SB505124 PI+ Bleomycin + SB505124+Navitoclax

0 33.0 75.3% 86.6%

5 PI+ PLX4720+Navitoclax PI+ PLX4720+Navitoclax + Roscovitine

0 33.0 75.3% 84.5%

6 PI+ Afatinib + Navitoclax PI+ Afatinib + Navitoclax + MLN4924

0 33.0 72.2% 82.5%

7 PI+ PD.173074+MLN4924 PI+ PD.173074+MLN4924+ KIN001.055

0 33.0 71.1% 82.5%

8 PI+ SN.38+ SB505124 PI+ SN.38+ SB505124+ ATRA

0 33.0 73.2% 85.6%

9 PI+ Bicalutamide + Navitoclax PI+ Bicalutamide + Navitoclax + EHT1864

0 33.0 72.2% 82.5%

10 PI+MLN4924+ PIK.93 PI+MLN4924+ PIK.93+ SB505124

0 33.0 74.2% 84.5%

11 PI+UNC0638+ 17.AAG PI+UNC0638+ 17.AAG+ EHT1864

0 33.0 72.2% 82.5%

12 PI+ YM201636+ Temozolomide PI+ YM201636+ Temozolomide + AZD8055

0 33.0 72.2% 82.5%

13 PI+Methotrexate + JW.7.24.1 PI+Methotrexate + JW.7.24.1 + AMG.706

0 33.0 73.2% 84.5%

14 PI+ KU.55933+GSK269962A PI+ KU.55933+GSK269962A+ KIN001.055

0 33.0 72.2% 83.5%

15 PI+NU.7441+ JQ1 PI+NU.7441+ JQ1+ EHT1864

0 33.0 72.2% 82.5%

16 PI+ AZD6482+UNC0638 PI+ AZD6482+UNC0638+MLN4924

0 33.0 74.2% 84.5%

17 PI+ CCT018159+ CP466722 PI+ CCT018159+ CP466722+ JQ1

0 33.0 72.2% 82.5%

18 PI+ JQ1+Doxorubicin PI+ JQ1+Doxorubicin + 17.AAG

0 33.0 74.2% 84.5%

19 PI+UNC0638+ AS605240 PI+UNC0638+AS605240+ Roscovitine

0 33.0 74.2% 83.5%

20 PI+ YK4.279 + TL.2.105 PI+ YK4.279 + TL.2.105 + Temsirolimus

0 33.0 73.2% 82.5%

21 PI+ AICAR+ SN.38 PI+ AICAR+ SN.38+ SB505124

0 33.0 71.1% 83.5%

22 PI+Docetaxel + Bleomycin PI+Docetaxel + Bleomycin + Roscovitine

0 33.0 72.2% 83.5%

23 PI+ PD.0332991 + Gefitinib PI+ PD.0332991 + Gefitinib + Bicalutamide.1

0 33.0 71.1% 80.4%

24 PI+ AG.014699 + Trametinib PI+ AG.014699 + Trametinib + Roscovitine

0 33.0 71.1% 81.4%

25 PI+GSK269962A+Navitoclax PI+GSK269962A+Navitoclax + Cetuximab

0 33.0 71.1% 81.4%
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specific inhibitor (PF-4708671), and the neddylation inhibitor
(MLN4924). Furthermore, when only the top PI-resistant cell lines
(R; highest 33% PI IC50) were considered, the following drugs were
predicted to be highly effective: 17.AAG, PLX4720, YM201636, and
the AKT inhibitor KIN001.102.

Top secDrugs induce loss of viability in HMCLs as single-agent
treatment
First, we used our panel of HMCLs as in vitro validation screens to
evaluate the top predicted secDrugs, including 17-AAG,
PF.4708671, SB505124, Navitoclax, PLX4720, MLN4924, YM201636,
FK866, KIN001.002. As shown in Fig. 1, the predicted secDrugs
showed high single-agent in vitro cytotoxicity in our myeloma cell
line panel, including innate and acquired PI-resistant and IMiD-
resistant myeloma cell lines compared to untreated control at
increasing concentrations of secondary drugs.

Single-cell transcriptomics (scRNA-seq)-based drug screening
predicted 17-AAG+ FK866 as potentially effective against
myeloma
Next, we used single-cell RNA sequencing (scRNAseq) as a novel
biomarker-based drug screen to identify single-cell sub-clones

(represented by t-SNE clusters) that harbor secDrug target genes
in the untreated/baseline HMCLs representing sensitive or
myeloma tumors. Our scRNA-seq data in (representative t-SNE
clusters shown in Fig. 2) demonstrated that the majority of the
single-cell clusters in drug-sensitive and drug-resistant myeloma
have high expression of 17-AAG target genes HSP90AA1,
HSP90AB1, and the FK866 target gene NAMPT indicating that
17-AAG and FK866 combination may be effective against these
subpopulation clusters. The 17-AAG target gene list was derived
from the Harvard Medical School (HMS)’s NIH Library of integrated
network-based cellular signatures perturbagen database, a pub-
licly available database devoted to understanding how human
cells respond to perturbation by drugs, the environment, and
mutation [23, 24].

17-AAG shows synergy with PIs, IMiDs, and FK866
We used a sub-panel of HMCLs representing PI-sensitive (FLAM76,
KAS6/1, MM1S), innate resistance (JIM-3, LP-1; representing
refractory disease), and acquired PI/IMiD resistant clonal pairs
(U266P/VR, RPMI8226P/VR, JJN-3P/VR, and MM1SP/LenR; repre-
senting relapse MM) to evaluate the effect of the predicted
secDrug-based combination regimen, 17-AAG+ FK866 either as a

Table 1. continued

Sl. No. NoDrug PI only (%) PI+ 2 secDrugs PI+ 3 secDrugs

26 PI+ piperlongumine + CP466722 PI+ piperlongumine + CP466722+MLN4924

0 33.0 72.2% 80.4%

27 PI+ Trametinib + CP466722 PI+ Trametinib + CP466722+ SB505124

0 33.0 72.2% 82.5%

28 PI+ KIN001.055 + Temozolomide PI+ KIN001.055 + Temozolomide + Temsirolimus

0 33.0 73.2% 82.5%

Percent coverage (cell lines predicted to be killed by each combination treatment regimen) of the cancer lines included in the prediction model is also
provided.
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Fig. 1 secDrugs decrease in vitro cell viability in multiple myeloma. Single-agent dose-response plots for the secDrugs in HMCLs. A 17-AAG;
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combination of these two secDrugs or using PIs or IMiDs as the
backbone. Cell survival curves representing 17-AAG+ Ixazomib,
17-AAG+ FK866, and 17-AAG+ Lenalidomide combination are
shown in Fig. 3A–C. We found that 17-AAG not only showed
synergy with PIs and IMiDs, the combination of 17-AAG and FK866
also showed significant synergy, as depicted by the dose-response
curves and CI values representing combination treatments. CI
values were consistently less than 1, which indicates synergy [25].
In addition, FK866 also showed synergy with Ixazomib (Ixa+
FK866 survival curves are shown in Fig. S1A). Cell survival curves
representing other top secDrugs+ Ixazomib combination in
innate sensitive, innate resistant, and acquired resistant HMCLs
are shown in Fig. S1B–F. These secDrugs also showed strikingly
high synergy with Ixazomib, as depicted by the CI values. Further,
based on dose reduction index (DRI) values, the IC50 of Ixazomib in
myeloma cell lines was predicted to be significantly reduced in the
presence of these secDrugs.
Figure S2 shows the relative decrease of the predicted effective

IC50 (nM concentration) of Ixazomib when used in combination
with 17-AAG. The DRI values, calculated using CI theorem,
demonstrated that 17-AAG improved the therapeutic index of PI
and IMiD administration to the cells and decreased the amount of
PI/IMiD required to achieve effective responses [25]. This points
towards the possibility of reducing the dose and thereby toxicity
of PIs when administered as 17AAG+ PI combination. Drug-
induced apoptosis was confirmed in HMCLs using Caspase 3/7
activity assays (data not shown).

CyTOF analysis revealed 17-AAG-induced cell death of PMCs
and key changes in myeloma-specific proteomic markers
High-dimensional mass cytometry or CyTOF analysis is a deep
immunophenotyping method that combines flow cytometry and
elemental mass spectrometry [26]. We performed CyTOF analysis
on PMCs obtained from myeloma patients (n= 6) to assess 17-
AAG-induced cell death through apoptosis as well as to evaluate

changes in phenotypic and functional markers in MM cells at the
single-cell/subclonal proteomics levels. As shown in Fig. 4A, CyTOF
analysis following exposure to 17-AAG treatment revealed a
distinct cluster of cells defined by elevated cleaved caspase levels
in the primary samples, indicating treatment-induced cell death
by apoptosis in the cells exposed to 17-AAG.
Myeloma cells are addicted to several proteins. Figure 4B shows

results from our CyTOF-based differential expression (pre vs. post-
17-AAG treatment) analysis, revealing shifts in IRF4 and pSTAT3 as
well as myeloma cell survival markers like CD138 and phospho-
proteins like pRB.

Western blotting analysis
Treatment-induced protein expression of the phenotypic/
functional markers of myeloma (p65/NFκB, IRF4, and cMyc)
and markers of apoptosis (including Cleaved Caspase-3,
Cleaved Caspase-9, etc.) was confirmed using immunoblotting
analysis in HMCLs. Figure S3A shows representative pre- vs.
post- 17-AAG treatment immunoblotting results on these
myeloma cell survival and apoptotic pathways. Densitometry
analysis results are provided in Fig. S3B. Our results show a
substantial decrease in IRF4, p65, and cMyc following 17-AAG
treatment and a concurrent increase in Cleaved Caspase-3,
Cleaved Caspase-9 protein expression, which was also con-
firmed at the mRNA level using pre- vs. post-17AAG-treatment
differential gene expression (RNAseq) analysis, along with
several other myeloma protein/survival markers like STAT1,
RELB, NFKBIA, NFKB2, and IKZF3.

17-AAG induces apoptosis via a mitochondrial-mediated
pathway in myeloma
To investigate if 17-AAG imparts its cytotoxic effects in myeloma
by generating reactive oxygen species (ROS), particularly super-
oxides and hydrogen peroxide (H2O2), cellular superoxide anions
were measured by using the fluorescent dye DHE (Abcam). MMP

Fig. 2 Representative plots showing single-cell RNAseq analysis results in sensitive and acquired-resistant myeloma cell line pairs. A
Comparison of the t-SNE/Graph-based clusters between U266P vs. U266VR cell lines (U266P—parental/sensitive, U266VR—acquired-resistant).
B Figure showing single-cells with an enriched expression of the target genes of 17AAG (HSP90AA1, HSP90AB1) and FK866 (NAMPT).
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was assessed using JC-1 (Abcam). JC-1 is a cationic carbocyanine
dye that accumulates in mitochondria. The dye exists as a
monomer (green fluorescence) at low concentrations and changes
color from green to red in energized mitochondria.
We observed induction of cellular superoxide anions (Fig. 5A)

and intracellular ROS production (Fig. 5B) that causes mitochon-
drial membrane depolarization following 17-AAG treatment in
myeloma cells representing sensitive and resistant disease.

17-AAG induced cell death was comparable with Hsp90
knockdown
Next, we compared the effect of Ixa and Ixa+17-AAG combina-
tion therapy between wild-type and CRISPR-mediated HSP90AA1
gene knockdown cell lines. Dose–response curves in Fig. S4 show
that the in vitro cytotoxicity in RPMI8226 cell lines was
comparable following HSP90 inhibition, either through 17-AAG
treatment or CRISPR-mediated HSP90 knockdown. This points
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Fig. 3 The secDrug 17AAG (Hsp90 inhibitor) synergizes with A. PIs (17AAG+ IXA), B. FK866 (17AAG+ FK866), and C. IMiDs (17AAG+
Lenalidomide). In vitro dose–response plots for secDrug combination treatment in HMCLs representing innate sensitivity, innate resistance,
Parental/sensitive, and clonally derived PI/IMiD acquired resistance. Cell viability was assessed by CellTiter-Glo assay (48 h). CI (combination
index) and DRI (dose reduction index) values were calculated using Chou–Talalay’s CI theorem. (CI > 1—antagonism; CI= 1—additive; CI < 1—
synergism) (VR-velcade/bortezomib/PI-resistant cell lines, LenR- Lenalidomide/IMiD-resistant cell line).
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toward an on-target effect of 17-AAG treatment leading to the
anti-MM efficacy.

NRas mutant HMCL showed high sensitivity to 17-AAG
treatment
Finally, the myeloma cell lines ANBL6P, ANBL6VR, and ANBL6 NRas
mutant were treated with single-agent 17-AAG, Ixa, and 17-AAG+
Ixa combination. We have described earlier that these activating
mutations of the ras oncogenes in ANBL6 (ANBL6 NRas) may lead
to growth factor independence and suppression of apoptosis [18].
Notably, our ANBL6 NRas mutant cell line showed 20-times greater
17-AAG sensitivity (lower IC50) compared to the ANBL6P or VR cell
lines (Fig. S5).

Gene-expression profiling analysis results
First, we compared the baseline (untreated) bulk mRNA sequen-
cing analysis profiles of the HMCLs representing extraordinary
responses (top-most sensitive vs. top-most resistant) to 17-AAG. At

p < 0.05, next-generation mRNA sequencing analysis showed 421
genes were DE between the 17-AAG-sensitive and the 17-AAG-
resistant groups (fold-difference≠1). Among these, 360 genes had
a fold change difference of >2 or <−2 between sensitive and
resistant groups. Table S2 shows the top 50 genes (top 25
upregulated+ top 25 downregulated) that were most DE as
signatures of 17-AAG sensitivity in myeloma. IPA analysis revealed
B Cell Receptor Signaling (p= 1.90E−03), RhoGDI Signaling (p=
1.22E−03), and IL-10 Signaling (p= 1.43E−03) as the top
canonical pathways associated with 17-AAG sensitivity in mye-
loma based on the genes that were DE.
Differential gene expression analysis of kinetic (treatment-

induced) changes between baseline (untreated) vs. single-agent
17-AAG (0.5 μM) treatment (24 h) in HMCLs representing sensitive
+ intermediate+ resistant myeloma showed a total of 1449 genes
were DE in response to 17-AAG with p-value less than 0.05 (|fold-
change | >1). Among these, 865 genes had a |fold-change | >2.
Figure 6A shows a heat map of the top 36 DEGs (|fold-change | >1;
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Fig. 4 Representative figures showing CyTOF analysis results in patient primary multiple myeloma cells. CyTOF analysis was performed on
Live cells (n= 6). A 17-AAG induces elevated cleaved caspase 3 levels. Samples were treated with 17-AAG (2, 5, and 10 μM) or DMSO and Gated
on LIVE cells. (i) The FlowSOM meta-cluster results were condensed into cc3 positive and negative cell subsets based on cc3 expression
UMAPs and plotted over CLF dose. (ii) cc3 induction is also shown in the violin plots. B Downregulation of genes associated with myeloma cell
survival. Representative violin plots of CyTOF analysis in patient primary myeloma cells showing expression of myeloma markers following
17-AAG treatment, including IRF4, pSTAT3, IZKF3, CD138, CD71, pRB, and CD27.

Fig. 5 17-AAG induces super-oxide levels, intracellular ROS generation, and mitochondrial membrane potential (MMP) in myeloma cell
lines. A Super-oxide. Cellular superoxide anions were measured by using the fluorescent dye DHE (Abcam), and red fluorescence was
detected by Synergy Neo2 multi-plate reader. B Mitochondrial membrane potential (MMP) was assessed using JC-1 (Abcam), a cationic
carbocyanine dye that accumulates in mitochondria. The dye exists as a monomer (green fluorescence) at low mitochondrial membrane
potential and changes color from green to red in energized mitochondria. Cells were incubated with 5 μM JC-1 dye for 15min in the dark at
37 °C, washed twice in PBS, and then analyzed for red and green fluorescence by Synergy Neo2 multi-plate reader.
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false-discovery rate (FDR < 0.05)). When single-agent 17-AAG-
induced kinetic changes were considered separately for each
HMCL (RPMI8226, FLAM76, JIM3, U266, and LP1), 422 genes were
found common between all the Treated vs. Untreated signatures
at |fold-change | >2 (p < 0.05), as shown in the Venn diagram (Fig.
S6). IPA analysis (Fig. 6B) based on the DEG signatures of 17-AAG
single-agent treatment revealed cell cycle control of chromosomal
replication (z-score −4.243; p-value 3.30E−12), EIF2 signaling
(2.496; p= 1.12e−04), aryl hydrocarbon receptor signaling (z-score
−3.464; p-value 1.96E−03), and protein ubiquitination pathway
(PUP; p= 7.90e−08) as top canonical pathways. Downregulation
of CEBPB (z-score −6.670; p-value of overlap 5.28e−19), ERBB2 (z-
score −5.358; p-value 2.57e−08), CSF2 (z-score −4.750; p-value
1.24e−05) and CCND1 (z-score −3.707; p-value 2.40e−07) and
upregulation of the microRNAs let-7 (z-score 5.501; p-value 2.01e
−09) were predicted as the top upstream regulator based on
significantly DEGs (Fig. 6C). Interestingly, IPA analysis also showed
that gene signatures of 17-AAG treatment were positively
correlated with that of bortezomib (z-score 2.048; p-value 1.68e
−05) and lenalidomide (z-score 2.774; p-value 2.80e−02), indicat-
ing a possible basis for 17-AAG+ PI and 17-AAG+ IMiD synergy.
A total of 3974 genes changed significantly between untreated

vs. 17-AAG+ Ixa combination-treated samples (p < 0.05; fold-
difference≠1). Among these, 853 genes showed |fold-change | >2
with a FDR < 0.05. Figure 7A depicts a heatmap of the top 50
genes associated with 17-AAG+ Ixa combination treatment. IPA
analysis based on DEGs significantly associated with 17AAG+ Ixa

treatment revealed PUP (p= 3.89E−23) as the top canonical
pathway (Fig. 7B). Upstream regulator prediction analysis revealed
inhibition of the transcriptional regulators CEBPB (z-score −8.871;
p-value of overlap 1.38e−22), MYC (z-score −6.732; p-value of
overlap 3.83e−18), as well as VEGF (z-score −6.805; p-value 9.76e
−07), HGF (z-score −7.139; p-value 2.08e−10), and CSF2 (z-score
−6.770; p-value 4.16e−07) following 17-AAG+ PI combination
treatment (Fig. 7C).
The Venn diagram in Fig. S7A shows 50 genes were common

between the three comparisons (17-AAG vs. Control, 17-AAG+ Ixa
vs. Control, and Ixa vs. control). Further, Fig. S7B also shows IPA-
predicted canonical pathways that these 50 common genes (p <
0.05) represent.
Finally, IPA predicted upregulation of the microRNA let-7 (z-

score 7.180; p-value 5.02e−12) as the top upstream regulator
based on significantly DEGs (Fig. S8)

Creation of secDrug software package
Finally, we developed an R software package based on our
secDrug pipeline for predicting novel secondary therapies in
chemotherapy-resistant cancers. secDrug takes a query of any
cancer type and any test/primary/standard-of-care drug and
outputs a list of the top secondary drug combinations with a
confidence score and biological pathway visualization. Thus,
secDrug has potential application in clinical decision-making for
discovering resistance-reversing cancer chemotherapy regimens.
R codes for the package are available at https://github.com/Ujjal-

Fig. 6 Differential gene expression analysis of 17-AAG single-agent treatment. A Heatmaps generated using unsupervised hierarchical
clustering (HC) analysis showing top differentially expressed genes (bulk RNAseq data) that showed significant de-regulation 24 h following
Single-agent 17-AAG exposure. IPA analysis results show B canonical pathways and C graphical summary. Columns represent cell lines, and
rows represent genes. Prior to Hierarchical clustering, gene expression values were z-score normalized.

H. Kumar et al.

9

Blood Cancer Journal           (2022) 12:39 

https://github.com/Ujjal-Mukherjee/secDrug/tree/main/CombinationDrugMyeloma


Mukherjee/secDrug/tree/main/CombinationDrugMyeloma, and the
datasets are available at GitHub repository.

DISCUSSION
Drug resistance is a major obstacle in achieving a complete and
sustained therapeutic effect in cancer chemotherapy
[2, 11, 14, 27, 28]. Chemo-resistance may also lead to over-
dosing and unwanted exposure to ineffective anti-tumor agents,
thereby increasing the risk of negative side effects and the cost of
drug development [29, 30].
In this study, we demonstrate the creation of a novel pipeline

for drug development/drug repurposing that integrates in silico
computational prediction, single-cell multi-omics (single-cell
transcriptomics/scRNAseq and single-cell proteomics/CyTOF ana-
lysis) with in vitro and ex vivo validation, including the use of
whole-genome transcriptomics (RNAseq) and genome editing
technologies to identify and functionally validate secondary
treatment regimens to circumvent drug resistance in myeloma.
Notably, we applied the pipeline to predict several drugs as
potential candidates for anti-MM secDrugs for combining with PIs.
These (“top secDrugs”) include, HSP90 inhibitor/17-AAG, Nicotina-
mide phosphoribosyltransferase or Nampt-inhibitor/FK866, Survi-
vin-inhibitor/YM155, PIKfyve-inhibitor/YM201636, Raf-inhibitor/
PLX-4720, Bcl2-inhibitor/Navitoclax, AKT inhibitor/KIN00102,

transforming growth factor-β type I receptor, ALK4, ALK7-
inhibitor/SB505124, HDAC-inhibitors (Panobinostat, SAHA), S6K1-
specific inhibitor/PF-4708671, and the neddylation-inhibitor/
MLN4924.
Further, we performed extensively in vitro, ex vivo, and

functional validation in research models of refractory and resistant
myeloma to validate 17-AAG+ FK866, 17AAG+ PI, and 17-AAG+
IMID as combination treatment candidates that also served as a
proof-of-principle for our secDrug pipeline. Overall, our validation
results corroborated with our in silico prediction of secondary
drugs based on secDrug analysis.
17-AAG/Tanespimycin has previously been shown to work

against myeloma, in vitro, in vivo (animal studies) as well in clinical
studies [31–34]. However, to our knowledge, this is the first study
that specifically evaluates the use of 17-AAG combination therapy
in relapsed and refractory myeloma models. Further, in our study,
the ANBL6 Ras mutant cell line showed 20-times lower 17-AAG
cytotoxicity compared to the ANBL6P/VR cell lines. An earlier study
in metastatic malignant melanoma has shown that a patient
harboring NRAS-activating mutation exhibited disease stabiliza-
tion for 49months following administration of pharmacologically
active doses of 17-AAG [35]. Mutations of NRAS have earlier been
shown to be significantly associated with lower single-agent PI-
sensitivity and shorter time to progression in bortezomib-treated
myeloma patients [36]. Thus, our study points towards a unique

Fig. 7 Differential gene expression analysis of 17-AAG+ PI combination treatment. A Heatmaps generated using unsupervised
hierarchical clustering (HC) analysis showing top differentially expressed genes (bulk RNAseq data) that showed significant de-regulation, 24 h
following 17-AAG+ Ixazomib combination treatment. IPA analysis results show B top 10 canonical pathways and C graphical summary.
Columns represent cell lines, and rows represent genes. Prior to Hierarchical clustering, gene expression values were z-score normalized.

H. Kumar et al.

10

Blood Cancer Journal           (2022) 12:39 

https://github.com/Ujjal-Mukherjee/secDrug/tree/main/CombinationDrugMyeloma
https://github.com/Ujjal-Mukherjee/secDrug


niche (NRas-mutant myeloma) where 17-AAG could be highly
effective as a single agent as well as in combination with PIs and
FK866, in addition to relapse and refractory myelomas. Moreover,
we evaluated the molecular pathways involved in response to the
top secondary drugs, which provided additional insights into the
mechanism of action of 17-AAG as a secDrug.
Myeloma tumor cells have elevated intracellular NAD+ levels

that support the high rate of energy metabolism for uncontrolled
proliferation, tumor cell growth, and survival [37]. FK866 is a
chemical inhibitor of Nampt (Nicotinamide phosphoribosyltrans-
ferase), a key enzyme in NAD+ metabolism [38]. Consequently,
FK866 has been shown to reduce myeloma tumor growth in PI-
sensitive and PI-resistant myeloma through activation of autop-
hagy and cell death in myeloma cells [39]. In this study, we
showed that FK866 not only overcomes PI-resistance when used
as a single-agent or as an Ixa combination, combining 17-AAG+
FK866 is highly synergistic against our validation models of
relapsed/refractory myeloma.
Our study introduces several novels secDrugs as potential

synergistic partners of PIs that have never been studied as potent
single-agent or combination therapy options in myeloma model
systems, including KIN001-102 (A6730; Akt1/2 kinase inhibitor) and
SB505124 (inhibitor of transforming growth factor-β type I receptor
or ALK4, ALK7 that activates the SMAD2/3 pathway). These may
serve as novel candidates for further studies on the pre-clinical and
clinical validation in xenograft or mouse models of myeloma.
Although some of the other predicted secDrugs have earlier

been shown to be effective against myeloma, very few studies
have explored their efficacy as drug combinations with PIs/IMiDs
in models of refractory/resistant myeloma. For example, PF-
4708671 is a P70S6K1 isoform-specific inhibitor that has recently
been shown to induce statistically significant apoptosis in HMCLs
and PMCs in combination with several standard-of-care therapies
[40]. NEDD8-activating enzyme/neddylation-inhibitor/MLN4924
has once earlier been shown effective against a subset of cell
lines represented by cell surface expression of TNFR1 [41].
PLX4720 (a small-molecule, ATP-competitive inhibitor of Mutant
BRAF kinase) was earlier shown to have a partial single-agent
response in patients harboring subclonal BRAF mutations [42, 43].
Our in silico predictions and single-agent cytotoxicity data thus
builds a strong case to test these drugs as secDrug combination
regimens in a wider panel of HMCLs representing refractory and
clonally derived acquired resistant cell lines. Among the other
secDrugs, Navitoclax is a high-affinity small-molecule BH3 mimetic
that inhibits Bcl2 and Bcl-xl. Navitoclax has been shown to inhibit
cell proliferation in myeloma leading to induction of apoptosis
[44, 45]. YM201636 is an inhibitor of PIKfyve, a mammalian protein
involved in the regulation of crucial cellular functions, including
nuclear signaling and autophagy. Few recent studies demon-
strated the therapeutic efficacy of PIKfyve inhibitors in myeloma
cell lines [46, 47].
Overall, we present here a unique pipeline that introduces not

only novel secDrugs but also provides additional niches for
secondary drugs that are already under preclinical or clinical
investigation in relapsed/refractory myeloma.
Our findings provide a strong case for combining the top

predicted secDrugs with PIs and IMiDs to overcome resistance and
thereby improve patient outcomes. This potentially introduces
many more drugs as new and more effective therapeutic options
for the management of resistant myeloma with a high probability
of clinical success that promises to improve the quality of
treatment, maximize drug efficacy, minimize toxicities and adverse
drug reactions from over-dosing and decrease the rate of
mortality in myeloma patients. A logical extension of this pipeline
would be the development of model systems where a combina-
tion of more than two secDrugs can be effectively tested.
The integration of in silico modeling-based pipeline with single-

cell technologies (scRNAseq and CyTOF analysis) introduces an

innovative, evidence-based application in clinical decision-making
that will minimize the number of test drugs required for
discovering successful combination chemotherapy regimens
against drug-resistant cancers.
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